1
0
mirror of https://github.com/aclindsa/moneygo.git synced 2024-12-29 00:22:28 -05:00
moneygo/internal/models/amounts.go

157 lines
3.8 KiB
Go
Raw Normal View History

package models
import (
"encoding/json"
"fmt"
"math"
"math/big"
"strings"
)
type Amount struct {
big.Rat
}
type PrecisionError struct {
message string
}
func (p PrecisionError) Error() string {
return p.message
}
// Whole returns the integral portion of the Amount
func (amount Amount) Whole() (int64, error) {
var whole big.Int
whole.Quo(amount.Num(), amount.Denom())
if whole.IsInt64() {
return whole.Int64(), nil
}
return 0, PrecisionError{"integral portion of Amount cannot be represented as an int64"}
}
// Fractional returns the fractional portion of the Amount, multiplied by
// 10^precision
func (amount Amount) Fractional(precision uint64) (int64, error) {
if precision < amount.Precision() {
return 0, PrecisionError{"Fractional portion of Amount cannot be represented with the given precision"}
}
// Reduce the fraction to its simplest form
var r, gcd, d, n big.Int
r.Rem(amount.Num(), amount.Denom())
gcd.GCD(nil, nil, &r, amount.Denom())
if gcd.Sign() != 0 {
n.Quo(&r, &gcd)
d.Quo(amount.Denom(), &gcd)
} else {
n.Set(&r)
d.Set(amount.Denom())
}
// Figure out what we need to multiply the numerator by to get the
// denominator to be 10^precision
var prec, multiplier big.Int
prec.SetUint64(precision)
multiplier.SetInt64(10)
multiplier.Exp(&multiplier, &prec, nil)
multiplier.Quo(&multiplier, &d)
n.Mul(&n, &multiplier)
if n.IsInt64() {
return n.Int64(), nil
}
return 0, fmt.Errorf("Fractional portion of Amount does not fit in int64 with given precision")
}
// FromParts re-assembles an Amount from the results from previous calls to
// Whole and Fractional
func (amount *Amount) FromParts(whole, fractional int64, precision uint64) {
var fracnum, fracdenom, power big.Int
fracnum.SetInt64(fractional)
fracdenom.SetInt64(10)
power.SetUint64(precision)
fracdenom.Exp(&fracdenom, &power, nil)
var fracrat big.Rat
fracrat.SetFrac(&fracnum, &fracdenom)
amount.Rat.SetInt64(whole)
amount.Rat.Add(&amount.Rat, &fracrat)
}
// Round rounds the given Amount to the given precision
func (amount *Amount) Round(precision uint64) {
// This probably isn't exactly the most efficient way to do this...
amount.SetString(amount.FloatString(int(precision)))
}
func (amount Amount) String() string {
return amount.FloatString(int(amount.Precision()))
}
func (amount *Amount) UnmarshalJSON(bytes []byte) error {
var value string
if err := json.Unmarshal(bytes, &value); err != nil {
return err
}
value = strings.TrimSpace(value)
if _, ok := amount.SetString(value); !ok {
return fmt.Errorf("Failed to parse '%s' into Amount", value)
}
return nil
}
func (amount Amount) MarshalJSON() ([]byte, error) {
return json.Marshal(amount.String())
}
// Precision returns the minimum positive integer p such that if you multiplied
// this Amount by 10^p, it would become an integer
func (amount Amount) Precision() uint64 {
if amount.IsInt() || amount.Sign() == 0 {
return 0
}
// Find d, the denominator of the reduced fractional portion of 'amount'
var r, gcd, d big.Int
r.Rem(amount.Num(), amount.Denom())
gcd.GCD(nil, nil, &r, amount.Denom())
if gcd.Sign() != 0 {
d.Quo(amount.Denom(), &gcd)
} else {
d.Set(amount.Denom())
}
d.Abs(&d)
var power, result big.Int
one := big.NewInt(1)
ten := big.NewInt(10)
// Estimate an initial power
if d.IsUint64() {
power.SetInt64(int64(math.Log10(float64(d.Uint64()))))
} else {
// If the simplified denominator wasn't a uint64, its > 10^19
power.SetInt64(19)
}
// If the initial estimate was too high, bring it down
result.Exp(ten, &power, nil)
for result.Cmp(&d) > 0 {
power.Sub(&power, one)
result.Exp(ten, &power, nil)
}
// If it was too low, bring it up
for result.Cmp(&d) < 0 {
power.Add(&power, one)
result.Exp(ten, &power, nil)
}
if !power.IsUint64() {
panic("Unable to represent Amount's precision as a uint64")
}
return power.Uint64()
}